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Abstract. The solution of the displacement front is one of the toughest problems in reservoir
simulation, since its accuracy depends strongly on the approximation scheme used for the
convective terms of the governing eguations. The scheme normally used is the UDS
(Upstream Differencing Scheme) that stabilizes the numerical solution, but introduces high
levels of numerical diffusion. The numerical diffusion provokes two important manifestations.
One is the smearing of the front, which can cause wrong forecasts of the breakthrough. The
other one is the distortion of the displacement front, the well-known grid orientation effect.
High-resolution methods, like TVD (Total Variation Diminishing) and ENO (Essentially Non-
Oscillatory), are able to reduce the numerical diffusion. Specialized literature in reservoir
simulation shows how to implement TVD schemes in a cartesian and boundary-fitted
coordinates. On the other hand, ENO scheme was introduced in reservoir simulation only for
cartesian grids. This paper suggests an ENO scheme to be used in reservoir simulation with
boundary-fitted coordinates. The performance of numerical methods, like UDS TVD and
ENO, is analyzed for a reservoir engineering problem and comparisons are made with a
refined grid UDS solution.
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1. INTRODUCTION

The governing equations of the multiphase flow in porous media are obtained performing
a mass balance for each component. Pressure and saturation or mass fractions, of each
component, are the unknowns. In this equation system, saturation behaves predominantly
hyperbolic while pressure shows a parabolic behavior. Therefore, one expects, generaly, a
continuous pressure distribution in the reservoir while saturation can present discontinuities.



Therefore, the hyperbolic nature of saturation is the main concern when concerning the
interpolation schemes.

The solution of the displacement front is a one of the toughest problems in reservoir
simulation and its accuracy depends strongly on the approximation scheme used for the
convective terms of the governing equations. The scheme normally used is the UDS, which
stabilizes the numerical solution and aways gives physical solutions, but introduces high
levels of numerical diffusion. Hence, this method excessively smears the front. The use of
higher-order schemes brings spurious oscillation in the computed solution, so, they are not a
reliable alternative. It is important to note that the difficulty is not restricted to petroleum
reservoir simulation, but to all the conservation laws systems with dominant convection.

The numerical diffusion has two important consequences. One is the smearing of the
front, which can cause wrong forecasts of the breakthrough. The other one is the distortion of
the displacement front, the so-called grid orientation effect, that is a multidimensiona effect
of the numerical diffusion. One can say that the front smearing is strongly related to the
magnitude of the numerical diffusion and the grid orientation effect to the magnitude of the
numerical diffusion in each direction. It is worth noting that both effects depend on the
numerical diffusion magnitude, consequently, its minimization results in the reduction of both
effects.

Following these ideas, the main concern of this paper isto apply high-resolution methods,
like TVD and ENO, to the solution of displacement processes to allow accurate resolution of
the fronts and minimization of the numerical diffusion, and, therefore, reduction of the grid
orientation effect. The main contribution of this paper is the implementation of an ENO
scheme for non-orthogonal boundary-fitted grids.

2. LITERATURE REVIEW

Todd et al. (1972) raised the so-called grid orientation effect. They studied two five-spot
grid systems, diagonal and parallel, and demonstrated that the predicted recovery performance
depends on the grid used. They proposed a two-point upstream scheme to reduce grid
orientation effect. The method is second-order in space and diminishes the numerical
diffusion’s effects, however, in some cases there are spurious oscillations.

Yanosik and McCracken (1976) observed that the probably grid orientation effect was
caused by not accounting for the diagonal flow by the five-point finite-difference formulation.
They presented a nine-point formulation that accounts for this flow. The authors showed
many results for unfavorable mobility-ratios, getting almost identical results for both diagonal
and parallel grids. One can conclude, observing these results, that the numerical diffusion was
absent in these simulations, but it is not true, since formulations bring a truncate errors
homogenization, and, consequently, obtain solutions with equal quantities of numerical
diffusion.

Harten (1983) inspired by Glim and Lax (1970), who had shown that the total variation of
the solution of a scalar one-dimensional conservation law can not increase, introduced the
total variation of a discrete function as a measure of its oscillatory nature. This led to the
formulation of the Total Variation Diminishing (TVD) schemes and the term quickly became
synonymous for high-resolution schemes.

Taggart and Pinczewski (1987), using finite differencing, developed uniform second and
third-order schemes to solve flows in porous media. They showed that the use of high-order
schemes bring better solution of the fronts and, in some cases, minimize the grid orientation
effect. Nevertheless, it was necessary to add physical dispersion in the model.



Harten and Osher (1987) and Harten et al. (1987) reexamined non-oscillatory
interpolation theory and developed the ENO schemes. After that, Shu and Osher (1988a,
1988b) developed an efficient and simpler manner to implement ENO schemes.

Rubin and Blunt (1991) introduced a TV D scheme simple to apply to both IMPES Black-
Oil models and fully implicit Black-Oil models. It was obtained using a first-order time
discretization version of the second-order TVD flux limited Lax-Wendroff scheme.

Pinto et al. (1991) applied TVD schemes to non-uniform cartesian grids directly in the
relative permeability. It was shown that it produced better results than when applied in the
total flux terms as Rubin and Blunt (1991) proposed.

Chen et al. (1991) obtained the minimization of the grid orientation effect through the use
of second-order TVD and third-order ENO in five-spot problems. The authors concluded that
the use of an ENO scheme reduces the grid orientation effect relative to the first order
method, UDS. They aso stressed that high-resolution methods accurately resolve
displacement fronts and therefore yield much more reliable solutions than do first-order
methods. In addition, using high-resolution method, many fewer grid blocks can be used to
achieve the same accuracy as afirst-order method.

Maliska et al. (1993) and Cunha et al. (1994) obtained results very close to the Y anosik
and McCracken’ s formulation, using boundary-fitted coordinates aligned to the flow and UDS
scheme. The authors pointed out that it is not always possible to find a curvilinear grid which
fits the flow direction and, therefore, the use of boundary-fitted grids is not a remedy to
eliminate the numerical diffusion.

Mota and Maliska (1994) extended the Rubin and Blunt TVD to boundary-fitted
coordinates, applying the scheme to the relative permeability. They concluded that, in many
cases, the results obtained with TVD are equivaent to the UDS results with three or more
times the number of grid nodes.

3. PROBLEM FORMULATION
3.1 Mathematical mode

The problem under consideration is the two-phase oil and water problem. The mass
balances for each component, oil and water for two-phase problem gives

%[qop"‘zw] = D{/\WDCDW -m” 1)
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where's ¢, AP, z', ®P, p™ are the porosity, permeability of phase p, mass fraction of the i
component, phase p potential and average density, respectively.

Inspecting EqQ. (1) and Eq. (2) one can see that the mass fractions z*, z° and the phase
potentials are unknowns. The phase potentials can be related to the oil pressure by capillary
pressures, consequently, the unknowns of the equation system become the mass fractions and
the oil pressure. So, there are two equations and three unknowns, requiring a closure equation.
In this case, the global mass conservation, water plus oil, is invoked. This is called the
constraint equation and is expressed by

z°+z% =1 3



In spite of having a well-posed problem, Eq. (1) to Eg. (3) do not form an appropriate
equation system to be solved by iterative methods. To obtain Z", Z°, in such away that Eq.
(3) is conserved, would require the creation of a correction equation to advance one of the
mass fractions based on the error of the global mass conservation. Therefore, it is preferable
to satisfy Eq. (3) by adding up Eqg. (1) to Eq. (2) and discarding the mass conservation for the
oil component, Eg. (2). Using this procedure, one finds the global mass conservation
equation, given by

%[¢pm]=D[AWD¢W+/\°Dq>° -m" -m° (4)

The corresponding equation system to be solved is, therefore, formed by Eq. (1), Eq. (3)
and Eq. (4). In all boundaries, it is prescribed no-flow boundary condition.

In order to complete the mathematical model, one need to define the initial conditions,
i.e, the initial pressure and saturation or mass fraction fields. A more detailed explanation of
the mathematical model, used in the present work can be seenin Maliska et al. (1997).

3.2 Numerical model

The equation system is solved using the fully implicit formulation with Newton’s method
in a generalized curvilinear coordinated framework. The conservation equations are
transformed to the new coordinated system, (¢, n, y), and then integrated in aregular domain,
as described in Maliska (1995). To illustrate, the transformed equation for the water
component, Eq. (1), istaken as an example and written below as
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The equation for the pressure is similar and is not presented here. The finite-volume
method, which consists in integrating the conservation equations in their divergence form, is
used. Integration of Eq. (5) in time and in space results
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where Dj; is given by
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withi,j=1,20r3and x}, x*ex® are &, n and y, respectively.

Note that the D;; terms, Eq. (7), must be calculated in each face of the control volume.
Hence, the mobilities, stored at the center of the volume, need to be interpolated. The quality
of the approximation scheme used for the face evaluations of the mobilities strongly
influences the displacement front solution accuracy. Complete explanation of the numerical
model used in the present work can be seenin Maliska et al. (1997).

4. PROPOSED SCHEME

In this section the Shu and Osher’s ENO scheme is presented and an ENO scheme to be
used in reservoir simulation with boundary-fitted coordinates is advanced. The UDS and TVD
implementation schemes are not presented here. For details see Czesnat et al. (1998).

ENO schemes are essentially, but not entirely, non-oscillatory and can yield solutions
with oscillations of magnitude O[ ax" ], where r is the order of the method. These oscillations,
from apractical point of view, in no way degrade the solution.

Shu and Osher (1988a, 1988b) suggested an efficient and much easier way to construct
ENO schemes than suggested by Harten and Osher (1987) and Harten et al. (1987). This
methodology is based on numerical fluxes rather than cell-averages and uses the Runge-K utta
method for time discretization. Since neither the reconstruction step nor the Lax-Wendroff
time discretization methodologies are necessary, the multidimensiona implementation
becomes easier.

Summarizing, this scheme uses the interpolation of two polynomials in the upstream and
downstream face to evaluate the convective flux. Therefore, to obtain a smooth
approximation, the polynomials are compared and the quantity with the smaller absolute value
is used. These polynomials are built through divided differences. For example, the first two
divided differences of afunction f are

fls]=1(s) (8)
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Cartesian ENO scheme. Consider a conservation law where F expresses the convective
flux and isafunction of S. In the east face, one has

F, =904 (10)
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where Q isafunction that represents the integral of the flux.
Polynomials are used to construct the function Q and they approximate this function in
some order using an adaptive stencil. Assuming that oF/0S >0, the first-order representation

of Q, Q,Is

Ql(x) = F[SP] [ﬂx - Xw) (11)



To compute the second-order contribution to Q, two divided differences designated a,
and b, must be formed as follows:

1 1
az :EF[SP'SE] and b, ZEF[SN'SP] (12)

The magnitude of a, and b, are then compared and the quantity of smaller absolute value
is chosen to represent Q,. Assuming |b,| <|a,|, Q, isgiven by

Q, (X) = Ql(x) +b, [(X - Xw) [(X - Xe) (13)

To obtain the third order, two additional divided differences must be formed. The
differences formed depend on the choice of a, or b, in Eq. (13). For |b,| <|a,| the differences
of interest are

a3=%F[SW,SP:SE] and ng%F[S\N\NaS\NP’SP] (14)

Like before, the quantity with smaller magnitude is used to approximate Q. For |b;| <|ay,
Q; is

Qs ()= Qa(x) + b [{x = X ) Cx = %, ) Ex = ) (15)

This scheme is third-order accurate in smooth regions, except at the zeros of flux
derivatives, where it may degenerate to second order. In discontinuous regions, the ENO, like
TVD, applies the UDS interpolation. It is worth noting that the ENO and TVD schemes can
be seen as an UDS approximation by adding anti-diffusive terms. In addition, one can observe
that the first two terms of the ENO scheme are equal to the TVD with the minmod limiting
function.

Boundary-fitted coordinates ENO scheme. The proposed scheme guarantees two
important characteristics. The first one is that the generalized ENO scheme recovers the
original, presented in the previous section, when applied to a cartesian grid. The second oneis
to obtain a generalized ENO scheme, which converts onto a generalized TVD when only the
first two terms are used, as explained in Mota and Maliska (1994) and Czesnat et al. (1998).

The transformation of the scheme is based on the transformation of the divided difference
table. The divided difference with one argument transformed remains the same, but the one
with two arguments, refer to Eq. (9), can be recognized as the first derivative second-order
approximation, in this case in the x direction

oF

| = F[Sp. Se]+ o(sz) (16)

e

S0, the transformation to the generalized system is

Flse.Se] O (OF &), (17)



where O represents the transformation and &; is the normalized ¢ covariant base vector,
given by

oomge 2o i) Bl ]

In order to attend the second characteristic, the Eq. (17) must be modified to

F[Se.Sc| O OF, (19)

[é‘f upstream-volume
where &; is evaluated in the volume immediately upstream of the flow direction on the

interpolated face.
After the above definition, it is assumed that the three argument divided difference can be
given by

F[SEISEE]_F[SP1SE]

F[SP +Se> SEE] = E (20)
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Now it is possible to evaluate F in a generalized form. For instance, on the east face, F is
approximate by

Fe =Q(x)e (22)

Again, polynomials are used to construct the function Q. Assuming that oF/dS>0, the
first-order representation of Q, Q,, is

Q(x)= F[SP] (23)
To compute the second-order contribution to Q, one can use a, and b, defined by Eq.

(12), but now Eg. (19) must be applied.
The magnitude of a, and b, are then compared and the quantity of smaller absolute value

is chosen to represent Q,. Assuming |b,| <|a,|, Q, is

Q%)= Q)+ b, d/an ), (24)

For |b,|<|a,| using a; and b, defined by Eq. (14), one can obtain Q, by applying Eq.
(20). Again assuming |o;| <|as|, Q, is

Qo) = Qo)+ b5 thyas ), tyame ) +(ouc ko) (25)



Boundary-fitted coordinates ENO scheme applied to petroleum equations. The
generalized ENO scheme is applied to the mobilities of the governing equations, Eg. (1) and
Eq. (4). It is worth noting that this methodology could be applied to the gas equation too, and
S0, can be used in three-phase reservoir problems.

To evaluate the mobility, one must use the Eq. (22) to (25), replacing F by A.

5. RESULTS

In order to investigate the grid orientation effect, Hegre et al. (1986) create a problem
with two producing wells equidistant from an injection well, as shown in Fig. 1. They used a
grid that aligns producer 2 with the injector well, consequently, there is anumerica preferable
path for the displacement front. The data can be found in Hegre et al. (1986).

Producer 1 ! Producer 2 W Injector
L] ! [ 4 @ Producer

2100 ft
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1200 ft
e

Figure 1 —Well’ s configuration and the grid used (24x10)

Observing Fig. 2 one can see that UDS introduces excessive numerical diffusion,
resulti ng in a breakthrough difference of more than 800 days. Meanwhile, by applying TVD
with 3 order limit function and ENO two benefits arise. First, the flood front becomes
sharper, delaying the breakthrough of the wells and allowing reliable oil recovery analysis.
Second, the forecast breakthrough differences decrease. One can note, looking at Table 1, that
the use of TVD and ENO, in this case, diminish the breakthrough difference in 42.4 and 22.5
percent, respectively.
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Figure 2 — Water cut results of the three-well system problem

Figure 3 depicts the water saturation map for each scheme for 1000 days. One can
observe that the displacement front is better captured using TVD and ENO schemes than
UDS, except for the refined UDS. However, in spite of these high-resolution schemes better
capture the sharp fronts, it can be seen the existence of a preferable flow path by the distortion
of the iso-saturation lines, showing the presence of grid orientation effects. Therefore, Fig. 3
is helpful for understanding that high-resolution schemes do not attack the grid orientation
problem working on equalizing the spatial distribution of truncation errors, as is donein nine
point schemes, but working on better prediction of the high gradients in the domain. For a



consistent numerical scheme, all errors disappear when the grid is refined and so does the grid
orientation effect. For coarse grids, however, the orientation effect can be resolved using two
approaches: directly, by the truncation error homogenization, or indirectly, by a more accurate
saturation front solution, as done with high-resolution schemes.

Table 1 — Forecast breakthrough for each scheme (values in days)

Scheme (grid) Non-aligned well ~ Aligned well Difference

UDS (24x10) 1931.42 1117.83 813.58
UDS ref. (72x30) 2113.17 1726.47 386.70
TVD 3" (24x10) 2317.28 1848.64 468.64
ENO (24x10) 2320.06 1689.36 630.70
* — ¢ uDs % ¢ P * ™
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Figure 3 — Saturation maps for 1000 days for the three-well system problem.
6. CONCLUSIONS

This paper presents methods to solve two-phase and three-phase reservoir problems
concerning the convective terms approximation. The use of high-resolution schemes is
suggested to avoid excessive numerical diffusion. Besides that, this work suggests an ENO
scheme to be used in reservoir simulation with boundary fitted-coordinates.

The performance of numerical methods, UDS, TVD and ENO, is anayzed for some
reservoir engineering problems using non-orthogonal grids. Comparisons are made with semi-
analytical solution and refined grid UDS solutions. The main conclusions are:

* The greatest quality of TVD and ENO schemes is their ability in predicting sharper
saturation fronts.

The TVD and ENO schemes do not resolve the grid orientation effect directly, but
these schemes can decrease it by accurate resolution of the fronts.

The generalized ENO scheme proposed worked well for the case studied.

The TVD scheme with third-order limit function obtains better solutions than ENO
scheme and is easier to implement. Therefore, it is recommended the use of TVD
with third-order limit function instead of the ENO scheme.
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